Distribution patterns and origins of \(n \)-Alkan-2-ones in surface peat and \textit{Sphagnum} in Chinese peatlands

Yiming Zhang\(^1,2\), Jiantao Xue\(^1,2\), Xianyu Huang\(^1,2\)*

\(^1\) Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
\(^2\) State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China

Abstract

\(n \)-Alkan-2-ones occur widely in peat deposits. Previous studies have indicated several possible origins for the \(n \)-alkan-2-ones, e.g. directly from peat-forming plant leaf waxes, oxidation products of \(n \)-alkanes and/or \(\beta \)-oxidation and decarboxylation of \(n \)-fatty acids. However, the distribution patterns of \(n \)-alkan-2-ones in different peatlands were not consistent, suggesting that the source of these compounds might have regional difference. In this study, the lipid distributions (\(n \)-alkanes, \(n \)-alkan-2-ones and \(n \)-alkanoic acids) in surface peat from five Chinese peatlands (YC, HN, DJH, SWGT and REG) were determined, together with the occurrence of \(n \)-alkan-2-ones in fresh \textit{Sphagnum}.

In most cases the \(n \)-alkan-2-ones ranged from \(C_{21} \) to \(C_{31} \), exhibiting an odd/even carbon number predominance. Interestingly, the \(n \)-alkan-2-one distributions in YC, HN, DJH and SWGT maximized at \(C_{27} \), consistent with previous studies in the higher latitude of the Northern Hemisphere. This suggested that there may be some similarities in the source of \(n \)-alkan-2-ones in these peatlands. In contrast, the non-\textit{Sphagnum} REG had a completely different distribution pattern of \(n \)-alkan-2-ones, with a maximum at \(C_{23} \). The correlation analysis revealed that there are positive correlation between \(C_{23} \) and \(C_{25} \) \(n \)-alkan-2-ones, also between \(C_{29} \) and \(C_{31} \) \(n \)-alkan-2-ones in YC, HN, DJH and SWGT peatlands. Meanwhile, slight negative correlations were also found between medium chain ketones (\(C_{21}, C_{23}, C_{25} \)) and long chain ketones (\(C_{29}, C_{31}, C_{33} \)), illustrating possible different sources of the former and the latter.

In REG, the distribution of \(n \)-alkanoic acids in REG had a good correlation with \(n \)-alkan-2-ones, supporting that \(n \)-alkan-2-ones in this non-\textit{Sphagnum} peatland may be produced by \(\beta \)-oxidation and decarboxylation of \(n \)-fatty acids. In contrast, the distribution patterns of \(n \)-alkanes in all peatland were different to those of \(n \)-alkan-2-ones, suggesting that the microbial oxidation of \(n \)-alkanes may not be the main source of \(n \)-alkan-2-ones. For \(n \)-alkanoic acids, in all samples from five peatlands, the \(C_{24} \) \(n \)-fatty acid was predominant. The \(\beta \)-oxidation and decarboxylation of the dominant \(C_{24} \) \(n \)-fatty acid would yield \(C_{23} \) \(n \)-alkan-2-ones, which was only minor components in YC, HN, DJH and SWGT peatlands. \textit{Sphagnum} samples collected from YC, DJH and SWGT were all dominated by \(C_{27} \), consistent with previous studies. Thus, it is probably that peat moss species are important sources of \(n \)-alkan-2-ones in \textit{Sphagnum} dominated settings. It is interesting to further discuss how environmental factors control the distribution of \(n \)-alkan-2-ones in these peatland samples.
Figure 1 The distributions of \(n \)-alkan-2-ones, \(n \)-alkanes, \(n \)-fatty acids in surface peat and \(n \)-alkan-2-ones in Sphagnum collected from YC, HN, DJH, SWGT and REG peatlands.

References