ZECHSTEIN 2 OIL CHARACTERISTICS IN THE SOUTHERN PERMIAN BASIN OF EUROPE: THE ROLE OF C_{40} CAROTENOIDS

M. Słowakiewicz1,2, M. Blumenberg3, D. Więcław4, K. Hindenberg5, H.-G. Röhling6, G. Scheeder3, E. F. Idiz7, M. E. Tucker1,2, R. D. Pancost1,2, M. J. Kotarba4, J. P. Gerling3

1University of Bristol, Bristol, UK
2Cabot Institute, Bristol, UK
3Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany
4AGH University of Science and Technology, Kraków, Poland
5Forschungszentrum Jülich GmbH, Jülich, Germany
6State Authority for Mining, Energy and Geology, Hannover, Germany
7University of Oxford, Oxford, UK

Introduction

The intracontinental Southern Permian Basin of Europe (SPB) is one of the richest and extensively studied petroliferous basins in Europe (Fig. 1). The SPB oils are predominantly reservoired in Zechstein 2 (Ca2) porous and fractured carbonate facies, that is the Main Dolomite in Poland and the Staßfurt Karbonat in Germany; which make up the second petroleum reservoir system (the first one is the Upper Rotliegend-Zechstein Limestone) within the Upper Permian deposits. The oils are interpreted to be derived from Ca2 basin, slope and lagoon facies. Although the Ca2 gas accumulations and their origin are relatively well understood, there is almost a complete lack of thorough biomarker studies, such that there are many uncertainties in Ca2 oil-oil correlations and correlations of Ca2 oils to potential source rocks. Furthermore, the lack of information prevents the establishment of oil families, an understanding of their origin, and a prediction of migration routes and possible secondary processes.

Here we integrate the available and newly-generated molecular and isotopic compositions of the Ca2 oils from NW and SW Poland, and NE, SE and S Germany, and identify the characteristic biomarkers to establish oil families. We also evaluate the occurrence of C_{40} carotenoids as a useful correlative proxy.

Results

For the statistical analysis, 34 crude oil samples were collected from NW Poland (Kamięń Pomorski and Pomerania carbonate platforms), SW Poland (west Fore-Sudetic Monocline), NE (Mecklenburg-Vorpommern) and SE (Brandenburg) parts of the North German (sub)-Basin and the northern part of the Thuringian (sub)-Basin. From an additional 9 oils from the NE and SE parts of the North German (sub)-Basin, only carbon isotopic data were available.

Source-related biomarker and carbon isotope ratios were used as a training set to construct a chemometric decision tree that allowed a genetic classification of oil samples. Hierarchical cluster analysis, based on the source-related data, allowed an assessment of the genetic relationships between the oil samples and was used to identify 5 distinct families. Twenty-seven genetic geochemical parameters that differentiate the samples include 16 terpane, 6
sterane, 3 aromatic (including C_{40} carotenoids, i.e., isorenieratane and chlorobactane), and 2 stable carbon isotope ratios. The thermal maturity of the studied oils corresponds to the early-to-peak oil window.

Results indicate that the Ca2 oils have characteristic biomarkers, most likely controlled by their regional occurrence and reservoir stratigraphy: a) C_{40} carotenoids (isorenieratane 16-709 µg/g oil; chlorobactane 1-65 µg/g oil) were detected in oils trapped in shallow-basin to lower slope and lagoonal facies; b) 28,30-bisnorhopane (BNH/C_{30} hopane = 0.01-0.07) occurs in oils trapped in the shallow-basin/lower slope-lagoonal facies in NW and SW Poland; c) high abundance of C_{35} homohopanes were detected in oils from shallow-basin/lower slope-lagoonal facies in NW Poland and NE Germany; d) a predominance of C_{34} homohopanes over C_{33} and C_{35} homohopane homologues is evidenced in oils from lagoonal facies in S Germany; e) the majority of Ca2 oils have C_{29} steranes dominant over C_{27} and C_{28} homologues suggesting both an algal and terrestrial organic matter (OM) source; f) a high abundance of diasteranes relative to regular steranes (>0.1) in almost all Ca2 oils is typical of petroleum derived from carbonate source rocks with an abundant clay content.

Conclusions

Ca2 oils were expelled from mixed evaporite (clay, marl)-carbonate source rocks characterized by a significant contribution of sapropelic (algal + microbial) and subordinate terrestrial (clay) OM. The oils were generated from OM preserved in anoxic (presence of 28,30-bisnorhopane, homohopane index >0.1), euxinic (presence of isorenieratene derivatives) and/or hypersaline conditions (gammacerane; euxinia). The biomarker characteristics of Ca2 oils suggests the oils derived from Ca2 lower slopes (NE SPB), hypersaline lagoons (SW Poland, SE Germany; SE SPB; northern Thuringian (sub)-Basin, S SPB) and sabkha-like Zechstein 1 and 2 evaporite (anhydrite, halite) deposits overlying and underlying Ca2 carbonate rocks.

C_{40} carotenoids are particularly important in two Ca2 oil families which allow for positive oil-oil correlation, identification of redox conditions during deposition of OM and are a measure of the contribution of bacteria to the total biomass.

![Figure 1 Palaeoenvironmental map of the Ca2 in the Late Permian in Europe with marked study areas (dashed lines). Longitude and latitude are present day values.](image-url)